327 research outputs found

    Quantifying Aleatoric and Epistemic Uncertainty in Machine Learning: Are Conditional Entropy and Mutual Information Appropriate Measures?

    Full text link
    This short note is a critical discussion of the quantification of aleatoric and epistemic uncertainty in terms of conditional entropy and mutual information, respectively, which has recently been proposed in machine learning and has become quite common since then. More generally, we question the idea of an additive decomposition of total uncertainty into its aleatoric and epistemic constituents.Comment: 7 pages, 3 figure

    Reliable Multi-label Classification: Prediction with Partial Abstention

    Full text link
    In contrast to conventional (single-label) classification, the setting of multilabel classification (MLC) allows an instance to belong to several classes simultaneously. Thus, instead of selecting a single class label, predictions take the form of a subset of all labels. In this paper, we study an extension of the setting of MLC, in which the learner is allowed to partially abstain from a prediction, that is, to deliver predictions on some but not necessarily all class labels. We propose a formalization of MLC with abstention in terms of a generalized loss minimization problem and present first results for the case of the Hamming loss, rank loss, and F-measure, both theoretical and experimental.Comment: 19 pages, 12 figure

    An analysis of chaining in multi-label classification

    Get PDF
    The idea of classifier chains has recently been introduced as a promising technique for multi-label classification. However, despite being intuitively appealing and showing strong performance in empirical studies, still very little is known about the main principles underlying this type of method. In this paper, we provide a detailed probabilistic analysis of classifier chains from a risk minimization perspective, thereby helping to gain a better understanding of this approach. As a main result, we clarify that the original chaining method seeks to approximate the joint mode of the conditional distribution of label vectors in a greedy manner. As a result of a theoretical regret analysis, we conclude that this approach can perform quite poorly in terms of subset 0/1 loss. Therefore, we present an enhanced inference procedure for which the worst-case regret can be upper-bounded far more tightly. In addition, we show that a probabilistic variant of chaining, which can be utilized for any loss function, becomes tractable by using Monte Carlo sampling. Finally, we present experimental results confirming the validity of our theoretical findings
    corecore